>>与软件开发有关的知识:操作系统,数据库,网络通信等 书籍支持  视频课程  卫琴专栏  在线测试  资源下载  联系我们
发表一个新主题 开启一个新投票 回复文章 您是本文章第 7830 个阅读者 刷新本主题
 * 贴子主题:  MySQL不推荐使用uuid或者雪花id作为主键 回复文章 点赞(0)  收藏  
作者:javathinker    发表时间:2020-12-27 01:27:23     消息  查看  搜索  好友  复制  引用

      在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是
auto_increment

,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?

本文我们就来分析这个问题,探讨一下内部的原因。

目录

  1. mysql程序实例
  2. 使用uuid和自增id的索引结构对比
  3. 总结

一、mysql程序实例

1.1 要说明这个问题,我们首先来建立三张表

分别是user_auto_key,user_uuid,user_random_key,分别表示自动增长的主键,uuid作为主键,随机key作为主键,其它我们完全保持不变.

     根据控制变量法,我们只把每个表的主键使用不同的策略生成,而其他的字段完全一样,然后测试一下表的插入速度和查询速度:
  注:这里的随机key其实是指用雪花算法算出来的前后不连续不重复无规律的id:一串18位长度的long值
id自动生成表:

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

image

     用户uuid表

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

image

     随机主键表:

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

image

1.2 使用spring的jdbcTemplate来实现增查测试

技术框架:springboot+jdbcTemplate+junit+hutool,程序的原理就是连接自己的测试数据库,然后在相同的环境下写入同等数量的数据,来分析一下insert插入的时间来进行综合其效率,为了做到最真实的效果,所有的数据采用随机生成,比如名字、邮箱、地址都是随机生成。    

@SpringBootTest
class MysqlDemoApplicationTests {

    @Autowired
    private JdbcTemplateService jdbcTemplateService;

    @Autowired
    private AutoKeyTableService autoKeyTableService;

    @Autowired
    private UUIDKeyTableService uuidKeyTableService;

    @Autowired
    private RandomKeyTableService randomKeyTableService;

    @Test
    void testDBTime() {

        StopWatch stopwatch = new StopWatch("执行sql时间消耗");

        /**
         * auto_increment key任务
         */

        final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)";

        List<UserKeyAuto> insertData = autoKeyTableService.getInsertData();
        stopwatch.start("自动生成key表任务开始");
        long start1 = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false);
            System.out.println(insertResult);
        }
        long end1 = System.currentTimeMillis();
        System.out.println("auto key消耗的时间:" + (end1 - start1));

        stopwatch.stop();

        /**
         * uudID的key
         */

        final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";

        List<UserKeyUUID> insertData2 = uuidKeyTableService.getInsertData();
        stopwatch.start("UUID的key表任务开始");
        long begin = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true);
            System.out.println(insertResult);
        }
        long over = System.currentTimeMillis();
        System.out.println("UUID key消耗的时间:" + (over - begin));

        stopwatch.stop();

        /**
         * 随机的long值key
         */

        final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
        List<UserKeyRandom> insertData3 = randomKeyTableService.getInsertData();
        stopwatch.start("随机的long值key表任务开始");
        Long start = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true);
            System.out.println(insertResult);
        }
        Long end = System.currentTimeMillis();
        System.out.println("随机key任务消耗时间:" + (end - start));
        stopwatch.stop();

        String result = stopwatch.prettyPrint();
        System.out.println(result);
    }

1.3 程序写入结果

user_key_auto写入结果:

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

              user_random_key写入结果:

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

              user_uuid表写入结果:

                点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小        

1.4 效率测试结果

            点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

                  在已有数据量为130W的时候:我们再来测试一下插入10w数据,看看会有什么结果:

                        点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

              可以看出在数据量100W左右的时候,uuid的插入效率垫底,并且在后序增加了130W的数据,uudi的时间又直线下降。

     时间占用量总体可以打出的效率排名为:auto_key>random_key>uuid,uuid的效率最低,在数据量较大的情况下,效率直线下滑。那么为什么会出现这样的现象呢?带着疑问,我们来探讨一下这个问题:

二、uuid和自增id的索引结构对比

2.1 使用自增id的内部结构

            点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

              自增的主键的值是顺序的,所以Innodb把每一条记录都存储在一条记录的后面。当达到页面的最大填充因子时候(innodb默认的最大填充因子是页大小的15/16,会留出1/16的空间留作以后的     修改):

     ①下一条记录就会写入新的页中,一旦数据按照这种顺序的方式加载,主键页就会近乎于顺序的记录填满,提升了页面的最大填充率,不会有页的浪费

②新插入的行一定会在原有的最大数据行下一行,mysql定位和寻址很快,不会为计算新行的位置而做出额外的消耗

③减少了页分裂和碎片的产生

2.2.使用uuid的索引内部结构

            点击在新窗口中浏览原图
CTRL+鼠标滚轮放大或缩小

              因为uuid相对顺序的自增id来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以innodb无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。

     这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:

     ①写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机IO

②因为写入是乱序的,innodb不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,一次插入最少需要修改三个页以上

③由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片

     在把随机值(uuid和雪花id)载入到聚簇索引(innodb默认的索引类型)以后,有时候会需要做一次OPTIMEIZE TABLE来重建表并优化页的填充,这将又需要一定的时间消耗。

     结论:使用innodb应该尽可能的按主键的自增顺序插入,并且尽可能使用单调的增加的聚簇键的值来插入新行

2.3.使用自增id的缺点

那么使用自增的id就完全没有坏处了吗?并不是,自增id也会存在以下几点问题:

     ①别人一旦爬取你的数据库,就可以根据数据库的自增id获取到你的业务增长信息,很容易分析出你的经营情况

②对于高并发的负载,innodb在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争

③Auto_Increment锁机制会造成自增锁的抢夺,有一定的性能损失
  附:Auto_increment的锁争抢问题,如果要改善需要调优innodb_autoinc_lock_mode的配置

三、总结

本文首先从开篇的提出问题,建表到使用jdbcTemplate去测试不同id的生成策略在大数据量的数据插入表现,然后分析了id的机制不同在mysql的索引结构以及优缺点,深入的解释了为何uuid和随机不重复id在数据插入中的性能损耗,详细的解释了这个问题。

在实际的开发中还是根据mysql的官方推荐最好使用自增id,mysql博大精深,内部还有很多值得优化的点需要我们学习。


----------------------------
原文链接:https://www.jianshu.com/p/1f91936b944f

程序猿的技术大观园:www.javathinker.net



[这个贴子最后由 flybird 在 2020-12-27 22:12:13 重新编辑]
  Java面向对象编程-->对象的生命周期
  JavaWeb开发-->JSP中使用JavaBean(Ⅰ)
  JSP与Hibernate开发-->通过JPA API检索数据
  Java网络编程-->通过JavaMail API收发邮件
  精通Spring-->Spring、Spring MVC与Java Web应用简介
  Vue3开发-->通过Vuex进行状态管理
  数据库索引创建与优化
  mysql 表分区、按时间函数分区、删除分区、自动添加表分区
  Mysql--所有版本安装以及完全卸载
  PostgreSQL VFD机制
  centos7手把手教你搭建zabbix监控
  MongoDB高手进阶指南
  MySQL 导入数据
  SQL AVG() 函数的用法
  SQL CREATE VIEW、REPLACE VIEW、 DROP VIEW 语句
  SQL的创建索引( CREATE INDEX) 语句的用法
  SQL CREATE DATABASE 创建数据库语句
  SQL SELECT INTO 语句
  XML的DTD定义
  比较XML的子元素和属性
  数据库设计(一)——数据库设计-生命不息,奋斗不止
  更多...
 IPIP: 已设置保密
楼主      
1页 0条记录 当前第1
发表一个新主题 开启一个新投票 回复文章


中文版权所有: JavaThinker技术网站 Copyright 2016-2026 沪ICP备16029593号
荟萃Java程序员智慧的结晶,分享交流Java前沿技术。  联系我们
如有技术文章涉及侵权,请与本站管理员联系。